Header
 
Login
 

Privatsphäre-Einstellungen

Wir verwenden Cookies auf unserer Website. Einige von ihnen sind unerlässlich, während andere uns helfen, diese Website und Ihre Erfahrungen zu verbessern.

Notwendig Statistik Marketing
Auswahl bestätigen
Weitere Einstellungen

Hier finden Sie eine Übersicht aller verwendeten Cookies. Sie können ganzen Kategorien Ihre Zustimmung geben oder weitere Informationen anzeigen und bestimmte Cookies auswählen.

Alle auswählen
Auswahl bestätigen
Notwendig Cookies
Wesentliche Cookies ermöglichen grundlegende Funktionen und sind für die ordnungsgemäße Funktion der Website erforderlich.
Statistik Cookies
Statistik-Cookies sammeln anonym Informationen. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.
Marketing Cookies
Marketing-Cookies werden von Werbekunden oder Publishern von Drittanbietern verwendet, um personalisierte Anzeigen zu schalten. Sie tun dies, indem sie Besucher über Websites hinweg verfolgen
Zurück
    Merken
    Figure 1: Illustration of random samples from real-world data (a) and synthetic data (b) (all figures provided by the authors).

    Use of synthetic data in AI development

    Insights from a case study in Cryo-EM image analysis

    IT

    IntroductionTarget operating process and challengesMachine learning methodology selectionModel validation and the role of synthetic dataCase study setup and resultsSummary and outlook
    Keywords: Unsupervised Machine Learning |  Synthetic Data |  Validation |  Adeno-Associated Viruses (AAV) |  Cryo-EM 

    Abstract

    Artificial Intelligence (AI), and in particular Machine Learning (ML) methods, unlock new approaches to digitalization through advanced data analysis – for instance for image processing. At the same time, novel high-resolution methods for collecting image data are opening up new use cases in analytical and quality control applications, like the use of cryogenic electron microscopy (cryo-EM) in pharma and biotechnology.

    In the context of these developments, a collaboration project has been initiated between the company ATEM Structural Discovery and the GAMP D-A-CH Working Group on the GxP compliant use of AI. This project deals with the accurate and precise characterization of adeno-associated viruses (AAV) for quality control purposes via high-resolution cryo-EM nano-imaging and subsequent automated image analysis. AAV vectors are primarily used in advanced treatment options such as gene therapies or in personalized medicine applications – a growing area of innovation in pharma and biotechnology.

    This article combines the use of cutting edge technology applied in analytical and quality control applications with requirements and challenges in GxP regulated environments considering process design, availability of data and generation of synthetic data as well as testing the robustness of the models. Thereby, this study is one practical example to apply Pharma 4.0 ideas that enable innovation via the interplay of advanced technology and a comprehensible, quality-oriented development process.

    Dr. Georg Bunzel1, Dr. Karl Bertram1, Dr. Nico Erdmann2, Martin Heitmann3, Carsten Jasper4 · 1ATEM SD GmbH, Remscheid 2 · Deloitte Wirtschaftsprüfungsgesellschaft GmbH, Düsseldorf 3 · d-fine GmbH, Frankfurt 4 · Charles River Microbial Solutions Germany GmbH, Kaarst

    Abstract

    Artificial Intelligence (AI), and in particular Machine Learning (ML) methods, unlock new approaches to digitalization through advanced data analysis – for instance for image processing. At the same time, novel high-resolution methods for collecting image data are opening up new use cases in analytical and quality control applications, like the use of cryogenic electron microscopy